AIMA(Artificial intelligence a modern approach ). | extrovert.dev -->

AIMA(Artificial intelligence a modern approach ).

AIMA(Artificial intelligence a modern approach ).
Saturday, December 9, 2017








aima is considered as the standard textbook for artificial intelligence written by Stuart J. Russell and Peter Norvig. Below is the listings of aima by Googlecode.

Index of Code

Fig | Page | Name (in book) | Code | |:--------|:---------|:-------------------|:---------| | 2 | 32 | Environment | Environment | | 2.1 | 33 | Agent | Agent | | 2.3 | 34 | Table-Driven-Vacuum-Agent | TableDrivenVacuumAgent | | 2.7 | 45 | Table-Driven-Agent | TableDrivenAgent | | 2.8 | 46 | Reflex-Vacuum-Agent | ReflexVacuumAgent | | 2.10 | 47 | Simple-Reflex-Agent | SimpleReflexAgent | | 2.12 | 49 | Reflex-Agent-With-State | ReflexAgentWithState | | 3.1 | 61 | Simple-Problem-Solving-Agent | SimpleProblemSolvingAgent | | 3 | 62 | Problem | Problem | | 3.2 | 63 | Romania | romania | | 3 | 69 | Node | Node | | 3.7 | 70 | Tree-Search | tree_search| | 3 | 71 | Queue | Queue | | 3.9 | 72 | Tree-Search | tree_search | | 3.13 | 77 | Depth-Limited-Search | depth_limited_search | | 3.14 | 79 | Iterative-Deepening-Search | iterative_deepening_search | | 3.19 | 83 | Graph-Search | graph_search | | 4 | 95 | Best-First-Search | best_first_graph_search | | 4 | 97 | A*-Search | astar_search | | 4.5 | 102 | Recursive-Best-First-Search | recursive_best_first_search | | 4.11 | 112 | Hill-Climbing | hill_climbing | | 4.14 | 116 | Simulated-Annealing | simulated_annealing | | 4.17 | 119 | Genetic-Algorithm | genetic_algorithm | | 4.20 | 126 | Online-DFS-Agent | | | 4.23 | 128 | LRTA*-Agent | | | 5 | 137 | CSP | CSP | | 5.3 | 142 | Backtracking-Search | backtracking_search | | 5.7 | 146 | AC-3 | AC3 | | 5.8 | 151 | Min-Conflicts | min_conflicts | | 6.3 | 166 | Minimax-Decision | minimax_decision | | 6.7 | 170 | Alpha-Beta-Search | alphabeta_search | | 7 | 195 | KB | KB | | 7.1 | 196 | KB-Agent | KB_Agent | | 7.7 | 205 | Propositional Logic Sentence | Expr | | 7.10 | 209 | TT-Entails | tt_entials | | 7 | 215 | Convert to CNF | to_cnf | | 7.12 | 216 | PL-Resolution | pl_resolution | | 7.14 | 219 | PL-FC-Entails? | pl_fc_resolution | | 7.16 | 222 | DPLL-Satisfiable? | dpll_satisfiable | | 7.17 | 223 | WalkSAT | WalkSAT | | 7.19 | 226 | PL-Wumpus-Agent | PLWumpusAgent | | 9 | 273 | Subst | subst | | 9.1 | 278 | Unify | unify | | 9.3 | 282 | FOL-FC-Ask | fol_fc_ask | | 9.6 | 288 | FOL-BC-Ask | fol_bc_ask | | 9.14 | 307 | Otter | | | 11.2 | 380 | Airport-problem | | | 11.3 | 381 | Spare-Tire-Problem | | | 11.4 | 383 | Three-Block-Tower | | | 11 | 390 | Partial-Order-Planner | | | 11.11 | 396 | Cake-Problem | | | 11.13 | 399 | Graphplan | | | 11.15 | 403 | SATPlan | | | 12.1 | 418 | Job-Shop-Problem | | | 12.3 | 421 | Job-Shop-Problem-With-Resources | | | 12.6 | 424 | House-Building-Problem | | | 12.10 | 435 | And-Or-Graph-Search | | | 12.22 | 449 | Continuous-POP-Agent | | | 12.23 | 450 | Doubles-tennis | | | 13.1 | 466 | DT-Agent | DTAgent | | 13 | 469 | Discrete Probability Distribution | DiscreteProbDist | | 13.4 | 477 | Enumerate-Joint-Ask | | | 14.10 | 509 | Elimination-Ask | | | 14.12 | 512 | Prior-Sample | | | 14.13 | 513 | Rejection-Sampling | | | 14.14 | 515 | Likelihood-Weighting | | | 14.15 | 517 | MCMC-Ask | | | 15.4 | 546 | Forward-Backward | | | 15.6 | 552 | Fixed-Lag-Smoothing | | | 15.15 | 566 | Particle-Filtering | | | 16.8 | 603 | Information-Gathering-Agent | | | 17.4 | 621 | Value-Iteration | value_iteration | | 17.7 | 624 | Policy-Iteration | policy_iteration | | 18.5 | 658 | Decision-Tree-Learning | DecisionTreeLearner | | 18.10 | 667 | AdaBoost | | | 18.14 | 672 | Decision-List-Learning | | | 19.2 | 681 | Current-Best-Learning | | | 19.3 | 683 | Version-Space-Learning | | | 19.8 | 696 | Minimal-Consistent-Det | | | 19.12 | 702 | FOIL | | | 20.21 | 742 | Perceptron-Learning | | | 20.25 | 746 | Back-Prop-Learning | | | 21.2 | 768 | Passive-ADP-Agent | | | 21.4 | 769 | Passive-TD-Agent | | | 21.8 | 776 | Q-Learning-Agent | | | 2y2.2 | 796 | Naive-Communicating-Agent | | | 22.7 | 801 | Chart-Parse | Chart | | 23.1 | 837 | Viterbi-Segmentation | viterbi_segment | | 24.21 | 892 | Align ||


Now we will see how to how to install aima libraries:

1.create a home directory let me say it as home.

2.Download aima python.zip to your home directory.

3.now unzip it in the home directory

      (Note to do this in python 2.3 + )

0 Response to AIMA(Artificial intelligence a modern approach ).

Comments are personally moderated by our team. Promotions are not encouraged.

Post a Comment