
Saturday, December 9, 2017
aima is considered as the standard textbook for artificial intelligence written by Stuart J. Russell and Peter Norvig. Below is the listings of aima by Googlecode.
Index of Code
| Fig | Page | Name (in book) | Code | |:--------|:---------|:-------------------|:---------| | 2 | 32 | Environment | Environment | | 2.1 | 33 | Agent | Agent | | 2.3 | 34 | Table-Driven-Vacuum-Agent | TableDrivenVacuumAgent | | 2.7 | 45 | Table-Driven-Agent | TableDrivenAgent | | 2.8 | 46 | Reflex-Vacuum-Agent | ReflexVacuumAgent | | 2.10 | 47 | Simple-Reflex-Agent | SimpleReflexAgent | | 2.12 | 49 | Reflex-Agent-With-State | ReflexAgentWithState | | 3.1 | 61 | Simple-Problem-Solving-Agent | SimpleProblemSolvingAgent | | 3 | 62 | Problem | Problem | | 3.2 | 63 | Romania | romania | | 3 | 69 | Node | Node | | 3.7 | 70 | Tree-Search | tree_search| | 3 | 71 | Queue | Queue | | 3.9 | 72 | Tree-Search | tree_search | | 3.13 | 77 | Depth-Limited-Search | depth_limited_search | | 3.14 | 79 | Iterative-Deepening-Search | iterative_deepening_search | | 3.19 | 83 | Graph-Search | graph_search | | 4 | 95 | Best-First-Search | best_first_graph_search | | 4 | 97 | A
*
-Search | astar_search | | 4.5 | 102 | Recursive-Best-First-Search | recursive_best_first_search | | 4.11 | 112 | Hill-Climbing | hill_climbing | | 4.14 | 116 | Simulated-Annealing | simulated_annealing | | 4.17 | 119 | Genetic-Algorithm | genetic_algorithm | | 4.20 | 126 | Online-DFS-Agent | | | 4.23 | 128 | LRTA*
-Agent | | | 5 | 137 | CSP | CSP | | 5.3 | 142 | Backtracking-Search | backtracking_search | | 5.7 | 146 | AC-3 | AC3 | | 5.8 | 151 | Min-Conflicts | min_conflicts | | 6.3 | 166 | Minimax-Decision | minimax_decision | | 6.7 | 170 | Alpha-Beta-Search | alphabeta_search | | 7 | 195 | KB | KB | | 7.1 | 196 | KB-Agent | KB_Agent | | 7.7 | 205 | Propositional Logic Sentence | Expr | | 7.10 | 209 | TT-Entails | tt_entials | | 7 | 215 | Convert to CNF | to_cnf | | 7.12 | 216 | PL-Resolution | pl_resolution | | 7.14 | 219 | PL-FC-Entails? | pl_fc_resolution | | 7.16 | 222 | DPLL-Satisfiable? | dpll_satisfiable | | 7.17 | 223 | WalkSAT | WalkSAT | | 7.19 | 226 | PL-Wumpus-Agent | PLWumpusAgent | | 9 | 273 | Subst | subst | | 9.1 | 278 | Unify | unify | | 9.3 | 282 | FOL-FC-Ask | fol_fc_ask | | 9.6 | 288 | FOL-BC-Ask | fol_bc_ask | | 9.14 | 307 | Otter | | | 11.2 | 380 | Airport-problem | | | 11.3 | 381 | Spare-Tire-Problem | | | 11.4 | 383 | Three-Block-Tower | | | 11 | 390 | Partial-Order-Planner | | | 11.11 | 396 | Cake-Problem | | | 11.13 | 399 | Graphplan | | | 11.15 | 403 | SATPlan | | | 12.1 | 418 | Job-Shop-Problem | | | 12.3 | 421 | Job-Shop-Problem-With-Resources | | | 12.6 | 424 | House-Building-Problem | | | 12.10 | 435 | And-Or-Graph-Search | | | 12.22 | 449 | Continuous-POP-Agent | | | 12.23 | 450 | Doubles-tennis | | | 13.1 | 466 | DT-Agent | DTAgent | | 13 | 469 | Discrete Probability Distribution | DiscreteProbDist | | 13.4 | 477 | Enumerate-Joint-Ask | | | 14.10 | 509 | Elimination-Ask | | | 14.12 | 512 | Prior-Sample | | | 14.13 | 513 | Rejection-Sampling | | | 14.14 | 515 | Likelihood-Weighting | | | 14.15 | 517 | MCMC-Ask | | | 15.4 | 546 | Forward-Backward | | | 15.6 | 552 | Fixed-Lag-Smoothing | | | 15.15 | 566 | Particle-Filtering | | | 16.8 | 603 | Information-Gathering-Agent | | | 17.4 | 621 | Value-Iteration | value_iteration | | 17.7 | 624 | Policy-Iteration | policy_iteration | | 18.5 | 658 | Decision-Tree-Learning | DecisionTreeLearner | | 18.10 | 667 | AdaBoost | | | 18.14 | 672 | Decision-List-Learning | | | 19.2 | 681 | Current-Best-Learning | | | 19.3 | 683 | Version-Space-Learning | | | 19.8 | 696 | Minimal-Consistent-Det | | | 19.12 | 702 | FOIL | | | 20.21 | 742 | Perceptron-Learning | | | 20.25 | 746 | Back-Prop-Learning | | | 21.2 | 768 | Passive-ADP-Agent | | | 21.4 | 769 | Passive-TD-Agent | | | 21.8 | 776 | Q-Learning-Agent | | | 2y2.2 | 796 | Naive-Communicating-Agent | | | 22.7 | 801 | Chart-Parse | Chart | | 23.1 | 837 | Viterbi-Segmentation | viterbi_segment | | 24.21 | 892 | Align ||
You can get detailed notes on aima https://hub.mybinder.org/user/aimacode-aima-python-tpaqn7ak/tree#notebooks
Now we will see how to how to install aima libraries:
1.create a home directory let me say it as home.
2.Download aima python.zip to your home directory.
3.now unzip it in the home directory
(Note to do this in python 2.3 + )
Saturday, December 9, 2017
Artificial intelligence
python
0 Response to AIMA(Artificial intelligence a modern approach ).
Comments are personally moderated by our team. Promotions are not encouraged.
Post a Comment