MASIGNASUKAv102
6510051498749449419

AIMA(Artificial intelligence a modern approach ).

AIMA(Artificial intelligence a modern approach ).
Add Comments
Saturday, December 9, 2017








aima is considered as the standard textbook for artificial intelligence written by Stuart J. Russell and Peter Norvig. Below is the listings of aima by Googlecode.

Index of Code

Fig | Page | Name (in book) | Code | |:--------|:---------|:-------------------|:---------| | 2 | 32 | Environment | Environment | | 2.1 | 33 | Agent | Agent | | 2.3 | 34 | Table-Driven-Vacuum-Agent | TableDrivenVacuumAgent | | 2.7 | 45 | Table-Driven-Agent | TableDrivenAgent | | 2.8 | 46 | Reflex-Vacuum-Agent | ReflexVacuumAgent | | 2.10 | 47 | Simple-Reflex-Agent | SimpleReflexAgent | | 2.12 | 49 | Reflex-Agent-With-State | ReflexAgentWithState | | 3.1 | 61 | Simple-Problem-Solving-Agent | SimpleProblemSolvingAgent | | 3 | 62 | Problem | Problem | | 3.2 | 63 | Romania | romania | | 3 | 69 | Node | Node | | 3.7 | 70 | Tree-Search | tree_search| | 3 | 71 | Queue | Queue | | 3.9 | 72 | Tree-Search | tree_search | | 3.13 | 77 | Depth-Limited-Search | depth_limited_search | | 3.14 | 79 | Iterative-Deepening-Search | iterative_deepening_search | | 3.19 | 83 | Graph-Search | graph_search | | 4 | 95 | Best-First-Search | best_first_graph_search | | 4 | 97 | A*-Search | astar_search | | 4.5 | 102 | Recursive-Best-First-Search | recursive_best_first_search | | 4.11 | 112 | Hill-Climbing | hill_climbing | | 4.14 | 116 | Simulated-Annealing | simulated_annealing | | 4.17 | 119 | Genetic-Algorithm | genetic_algorithm | | 4.20 | 126 | Online-DFS-Agent | | | 4.23 | 128 | LRTA*-Agent | | | 5 | 137 | CSP | CSP | | 5.3 | 142 | Backtracking-Search | backtracking_search | | 5.7 | 146 | AC-3 | AC3 | | 5.8 | 151 | Min-Conflicts | min_conflicts | | 6.3 | 166 | Minimax-Decision | minimax_decision | | 6.7 | 170 | Alpha-Beta-Search | alphabeta_search | | 7 | 195 | KB | KB | | 7.1 | 196 | KB-Agent | KB_Agent | | 7.7 | 205 | Propositional Logic Sentence | Expr | | 7.10 | 209 | TT-Entails | tt_entials | | 7 | 215 | Convert to CNF | to_cnf | | 7.12 | 216 | PL-Resolution | pl_resolution | | 7.14 | 219 | PL-FC-Entails? | pl_fc_resolution | | 7.16 | 222 | DPLL-Satisfiable? | dpll_satisfiable | | 7.17 | 223 | WalkSAT | WalkSAT | | 7.19 | 226 | PL-Wumpus-Agent | PLWumpusAgent | | 9 | 273 | Subst | subst | | 9.1 | 278 | Unify | unify | | 9.3 | 282 | FOL-FC-Ask | fol_fc_ask | | 9.6 | 288 | FOL-BC-Ask | fol_bc_ask | | 9.14 | 307 | Otter | | | 11.2 | 380 | Airport-problem | | | 11.3 | 381 | Spare-Tire-Problem | | | 11.4 | 383 | Three-Block-Tower | | | 11 | 390 | Partial-Order-Planner | | | 11.11 | 396 | Cake-Problem | | | 11.13 | 399 | Graphplan | | | 11.15 | 403 | SATPlan | | | 12.1 | 418 | Job-Shop-Problem | | | 12.3 | 421 | Job-Shop-Problem-With-Resources | | | 12.6 | 424 | House-Building-Problem | | | 12.10 | 435 | And-Or-Graph-Search | | | 12.22 | 449 | Continuous-POP-Agent | | | 12.23 | 450 | Doubles-tennis | | | 13.1 | 466 | DT-Agent | DTAgent | | 13 | 469 | Discrete Probability Distribution | DiscreteProbDist | | 13.4 | 477 | Enumerate-Joint-Ask | | | 14.10 | 509 | Elimination-Ask | | | 14.12 | 512 | Prior-Sample | | | 14.13 | 513 | Rejection-Sampling | | | 14.14 | 515 | Likelihood-Weighting | | | 14.15 | 517 | MCMC-Ask | | | 15.4 | 546 | Forward-Backward | | | 15.6 | 552 | Fixed-Lag-Smoothing | | | 15.15 | 566 | Particle-Filtering | | | 16.8 | 603 | Information-Gathering-Agent | | | 17.4 | 621 | Value-Iteration | value_iteration | | 17.7 | 624 | Policy-Iteration | policy_iteration | | 18.5 | 658 | Decision-Tree-Learning | DecisionTreeLearner | | 18.10 | 667 | AdaBoost | | | 18.14 | 672 | Decision-List-Learning | | | 19.2 | 681 | Current-Best-Learning | | | 19.3 | 683 | Version-Space-Learning | | | 19.8 | 696 | Minimal-Consistent-Det | | | 19.12 | 702 | FOIL | | | 20.21 | 742 | Perceptron-Learning | | | 20.25 | 746 | Back-Prop-Learning | | | 21.2 | 768 | Passive-ADP-Agent | | | 21.4 | 769 | Passive-TD-Agent | | | 21.8 | 776 | Q-Learning-Agent | | | 2y2.2 | 796 | Naive-Communicating-Agent | | | 22.7 | 801 | Chart-Parse | Chart | | 23.1 | 837 | Viterbi-Segmentation | viterbi_segment | | 24.21 | 892 | Align ||


Now we will see how to how to install aima libraries:

1.create a home directory let me say it as home.

2.Download aima python.zip to your home directory.

3.now unzip it in the home directory

      (Note to do this in python 2.3 + )
Adarshreddy Adelli

As an Engineering Lead with deep expertise in Artificial Intelligence, Cybersecurity, and Systems Architecture, I guide teams in building innovative, secure, and scalable solutions.I am passionate about tackling challenging technical problems, fostering engineering excellence, and delivering solutions that balance innovation, security, and performance. I actively share knowledge through blogging and community engagement, contributing to the advancement of AI and cybersecurity practices.